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Abstract

A study on the free vibration analysis of plates is described in this paper. In order to investigate
vibrational characteristics of plates, a four-node plate element is developed by using the assumed natural
strains on the basis of Reissner–Mindlin (RM) assumptions which allows us to consider the shear
deformation and rotatory inertia effect. All terms related to the plate finite element formulation are
consistently defined in the natural domain. Assumed natural strains are derived to alleviate the locking
phenomena inherited in the RM plate elements. In particular, the explicit expression of assumed natural
transverse shear strain is described in this paper. The natural constitutive equation is used in conjunction
with the natural strain terms. Several numerical examples are carried out and their results are then
compared with the existing reference solutions.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

For years, there has been a large amount of research work on the free vibration analysis of plate
structures. In the early days, analytical methods were widely adopted but soon the finite element
(FE) technology became the most popular approach of assessing vibrational characteristics of the
plates in engineering practices.

The extensive review on plate vibration can be found in the literature provided by Leissa [1–4]
and more recently, Liew [5] provided some review on thick plate vibration problems. For thick
plate problems, the Reissner–Mindlin (RM) assumptions [6] have been generally adopted in the
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development of plate elements. It has been shown that the accuracy of the frequency is improved
by the shear deformation and rotatory inertia effects included in the stiffness and mass matrices,
respectively. However, it is found that there are serious defects such as the locking phenomena in
the RM plate element.

As an early remedy of the locking phenomena inherited in the thick plate element based on RM
assumptions, the so-called reduced integration [7,8] was used in the transverse shear energy term.
But the plate elements with the reduced integration suffered from the mechanism and later other
methods, such as assumed strain methods [9] and stabilization method [10], have been proposed
by many researchers. The assumed strain methods have been successfully used in stress FE
analysis. But contrarily there is little investigation on the performance of the assumed strained
FEs [11–14], in particular lower order plate element, in free vibration analysis.

In this paper, therefore, a bilinear plate FE formulation based on the natural domain is
provided with emphasis on the terms related to the stiffness and mass matrices. Then, a set of
benchmarks are presented to show the applicability of the present plate element to various types
of plates under free vibration conditions. Note that the Gauss integration rule is adopted to
evaluate the consistent mass matrix and subspace iteration method [15] is employed in the
calculation of the lowest eigenvalues of plates. It should be noted that the lumped mass matrix
derived by the HRZ method [16] is also used in analysis to produce FE reference solutions for
future study.

2. Reissner–Mindlin assumptions

The following basic assumptions of RM plate theory are employed throughout this study:

* The normal to the mid-surface of plate remains straight after deformation but not necessarily
normal to the deformed mid-surface.

* The normal transverse stress is negligible as in Kirchhoff–Love theory.
* The displacements are small compared to the plate thickness.

Numerical integration through the thickness direction is facilitated by the first assumption and
the constitutive equation is simplified by the second assumption.

From the first assumption of the RM theory, the displacement field of plate element will have
only Co continuity and it can be illustrated as shown in Fig. 1.

3. Assumed strain field

In the plate formulation, standard definition of natural strains [14] can be used. However, the
RM plate element produces the shear locking phenomena and the assumed strain formulation is
therefore employed in this study. There are two main steps in order to derive the assumed strain
field:

* the calculation of the positions of the sampling points for the assumed strain field,
* the interpolation of the assumed strains using standard strains calculated at sampling points.
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Here, the procedure calculating the sampling points and the derivation of assumed natural
strains for a bilinear plate element are presented.

3.1. The position of sampling points

The positions of sampling points are the locations [13,14] where the locking does not exist. It is
extremely important to find reasonable sampling points since the assumed strains will be
interpolated using the strains calculated at sampling points. In this section, the procedure of
calculation of sampling points is described for four-node plate bending element which normally
exhibits transverse shear lockings with the standard displacement formulation. RM assumptions
with the plate bending situation is used to determine the positions of sampling points for
transverse shear strains.

With RM assumptions, the displacement components due to bending at point ðx1; x2;x3Þ can be
expressed in the global co-ordinate system as (see Fig. 2)

ui ¼ x3yiðx1; x2Þ ði ¼ 1; 2Þ;

u3 ¼ u3ðx1;x2Þ; ð1Þ

where u1 are u2 are the in-plane displacement components, u3 is the transverse deflection, y1 is the
normal rotation in x1–x3 plane, and y2 is the normal rotation in x2–x3 plane.

The transverse shear strain components in the global co-ordinate system are

e3i ¼
@ui

@x3
þ

@u3

@xi

ði ¼ 1; 2Þ: ð2Þ

The above equation can be rewritten in view of Eq. (1)

e3i ¼ yi þ
@u3

@xi

ði ¼ 1; 2Þ: ð3Þ

At this stage, natural strain components are introduced to treat this problem efficiently. The
natural transverse shear strain can be written by using the tensor transformation.

*e3a ¼
@xi

@xa
e3i ða ¼ 1; 2; i ¼ 1; 2 summedÞ: ð4Þ
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Substituting Eq. (3) into Eq. (4) yields

*e3a ¼
@xi

@xa
yi þ

@u3

@xa
ða ¼ 1; 2; i ¼ 1; 2 summedÞ

¼ *ya þ
@u3

@xa
ða ¼ 1; 2Þ: ð5Þ

Note that the strain components e3i in the global co-ordinate system can be obtained by
inversion of Eq. (4) as

e3i ¼
@xa
@xi

*e3a ða ¼ 1; 2 summed; i ¼ 1; 2Þ: ð6Þ

Physically, transverse shear strains will vanish if the thickness–span ratio of the plate is extremely
small:

*e3a ¼ 0 ða ¼ 1; 2Þ; ð7Þ

or

*ya ¼ �
@u3

@xa
ða ¼ 1; 2Þ: ð8Þ

It is now clear that the polynomial of term *ya of Eq. (8) is one order higher than that of the term
@u3=@xa: Therefore, it is not possible to achieve Eq. (7). In order to solve the inconsistency of the
order of two terms, we may have two solutions as follows

* The coefficients of higher order term in *ya should be enforced to be zero.
* All terms presented in the expression of *ya may have their counterpart in the expression of

@u3=@xa:
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In this study, the second solution is adopted and new assumed displacement field *u3 is
introduced. Therefore, the polynomial terms of @u3=@xa can include all terms of the *ya: The
assumed biquadratic displacement field *u3 can be written as

*u3 ¼
X2

p;q¼0

cpqðx1Þ
pðx2Þ

q: ð9Þ

Since the procedure for calculating the sampling point is similar to each other, the calculation of
the sampling points for the term *e31 of four-node element is only presented here. For four-node
Lagrangian element, the rotation and deflection fields yiði ¼ 1; 2Þ and u3 are

yi ¼
X4

a¼1

Naðx1; x2Þy
a
i ði ¼ 1; 2Þ;

u3 ¼
X4

a¼1

Naðx1; x2Þu
a
3; ð10Þ

where Naðx1; x2Þ is the linear Lagrange shape function associated with node a such as

Naðx1; x2Þ ¼ 1
4
ð1 þ xa

1x1Þð1 þ xa
2x2Þ; ð11Þ

where xa
1; xa

2 denote the position of nodal point a according to natural co-ordinate system.
Let the bilinear approximation of deflection be

u3 ¼
X4

a¼1

Na *u
a
3; ð12Þ

where *ua
3 is the nodal displacement value at node a calculated using assumed displacement field of

Eq. (9) and Eq. (12) can be rewritten in the explicit form as

u3 ¼ ðc00 þ c20 þ c02 þ c22Þ þ ðc10 þ c12Þx1 þ ðc01 þ c21Þx2: ð13Þ

Enforcing the equality of derivatives of u3 and *u3 with respect to x1

@u3

@x1

¼
@ eu3u3

@x1

; ð14Þ

yields

2x1ðc20 þ c21x2 þ c22ðx2Þ
2Þ þ c12ððx2Þ

2 � 1Þ ¼ 0: ð15Þ

For arbitrary values of c20; c21; c22 and c12; the following solutions to Eq. (15) can be obtained:

x1 ¼ 0; x2 ¼ 1 and x1 ¼ 0; x2 ¼ �1: ð16Þ

Another set of the sampling points for *e32 can be calculated by the same procedure used for *e31

and those are

x1 ¼ 1; x2 ¼ 0 and x1 ¼ �1; x2 ¼ 0: ð17Þ

The position of the sampling points for *e31 and *e32 is illustrated in Fig. 3.
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3.2. Assumed natural strains

The interpolation functions used in the formulation of assumed strains are based on
Lagrangian polynomial and the position of sampling points in the previous section. Therefore, the
assumed natural strains are defined as follows:

*eðaÞ13 ¼
X2

d¼1

Pdðx2Þ*e
d
13; *eðaÞ23 ¼

X2

d¼1

Qdðx1Þ*e
d
23; ð18Þ

in which d denotes the position of the sampling point as shown in Fig. 3 and the interpolation
functions P and Q are

P1ðxÞ ¼ 1
2
ð1 � xÞ; P2ðxÞ ¼ 1

2
ð1 þ xÞ;

Q1ðxÞ ¼ 1
2
ð1 þ xÞ; Q2ðxÞ ¼ 1

2
ð1 � xÞ: ð19Þ

Finally, we can write the explicit form of assumed strains for a four-node RM plate element in
the following form:

*eðaÞ31 ¼ 1
4 x

a
1ð1 þ xa

2x2Þu
a
3

þ 1
4
½a1ð1 þ xa

2x2Þ þ b1ðx
a
2 þ x2Þ�y

a
1

þ 1
4
½a2ð1 þ xa

2x2Þ þ b2ðx
a
2 þ x2Þ�y

a
2; ð20Þ

*eðaÞ32 ¼ 1
4
xa

2ð1 þ xa
1x1Þu

a
3

þ 1
4
½g1ð1 þ xa

1x1Þ þ b1ðx
a
1 þ x1Þ�y

a
1

þ 1
4
½g2ð1 þ xa

1x1Þ þ b2ðx
a
1 þ x1Þ�y

a
2; ð21Þ

where the parameters a1;b1; g1; a2; b2; g2 are

a1 ¼ 1
4 ð�x1

1 þ x2
1 þ x3

1 � x4
1Þ;

b1 ¼
1
4
ðx1

1 � x2
1 þ x3

1 � x4
1Þ;

g1 ¼
1
4
ð�x1

1 � x2
1 þ x3

1 þ x4
1Þ;

a2 ¼ 1
4 ð�x1

2 þ x2
2 þ x3

2 � x4
2Þ;

b2 ¼
1
4
ðx1

2 � x2
2 þ x3

2 � x4
2Þ;

g2 ¼
1
4
ð�x1

2 � x2
2 þ x3

2 þ x4
2Þ; ð22Þ
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where xa
i denotes the ith component of the position vector x at node a in global co-ordinate

system. The assumed natural transverse shear strains of Eqs. (20) and (21) are used instead of the
standard transverse shear strain terms in this study.

4. Constitutive equation

The stress tensor for elastically isotropic materials can be written as

sij ¼ Dijklekl ¼ ½ldijdkl þ mðdikdjl þ dildjkÞ�ekl ; ð23Þ

where sij is the Cauchy stress, Dijkl is a fourth order isotropic material tensor and ekl is the small
strains. l and m are the Lam!e constants and dij is the Kronecker delta. An isotropic material is not
direction dependent. However, a scaling factor has to be introduced when elastic constants are
formed in the natural domain. The natural stress tensor can be written as follows:

*sab ¼ *Dabgd*egd ¼ *J½lgabggd þ mðgaggbd þ gadgbgÞ�*egd; ð24Þ

where the natural constitutive tensor is obtained from

*Dabgd ¼ *J
@xa
@xi

@xb
@xj

@xg
@xk

@xd
@xl

Dijkl ; ð25Þ

and *J ¼ det½@xi=@xa� and gab ¼ @xa=@xi@xb=@xi:
The above equation can be reduced using the generalized plane stress condition *s3 ¼ 0 as

follows:

*D�
abgd ¼ %J½%l %gab %ggd þ mð %gag %gbd þ %gad %gbgÞ�; ð26Þ

where %l is the reduced Lam!e constant for the generalized plane stress–strain relationship, %J and

%gab are calculated using *J and *gab at x3 ¼ 0:
Now the natural stresses can be rewritten in matrix form as

*rp

*rs

( )
¼

*D�p 0

0 *D�s

" #
*ep

*es

( )
; ð27Þ

where *rp ¼ ½ *s11; *s22; *s12�T is the in-plane stress term and *rs ¼ ½ *s13; *s23�T is the transverse shear
stress term and the natural in-plane and transverse shear rigidity matrices *D�p ; *D

�
s are

*D�p ¼ %J

a %g2
11 b %g11 %g22 þ 2 %g2

12 a %g11 %g12

b %g11 %g22 þ 2 %g2
12 a %g2

22 a %g12 %g22

a %g11 %g12 a %g12 %g22 b %g2
12 þ mð %g11 %g22 þ %g2

12Þ

264
375; ð28Þ

*D�s ¼ %J
ksm %g11 %g33 ksm %g12 %g33

ksm %g12 %g33 ksm %g22 %g33

" #
; ð29Þ

in which, the parameters a and b are

a ¼
4mðlþ mÞ
lþ 2m

¼
E

1 � n2
and b ¼

2ml
lþ 2m

¼
nE

1 � n2
ð30Þ
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and ks is the shear correction factor which is in general taken as 5/6 for an isotropic material and n
is the Poisson ratio.

In the plate problem, the global co-ordinate x3 coincides with the natural co-ordinate x3 and
therefore the term %g33 is equal to 1 and the transverse shear rigidity matrix *D�s can be finally
written as

*D�s ¼ %J
ksm %g11 ksm %g12

ksm %g12 ksm %g22

" #
: ð31Þ

After forming the natural co-ordinate-based stress–strain relationship, stress resultants
constitutive model could be obtained by taking pre-integration of thickness direction. Finally,
the stress resultants constitutive equation used in this study can be written as

f *M1; *M2; *M12g ¼
Z
*c
x3f *s11; *s22; *s12g dx3;

f *Q1; *Q2g ¼
Z
*c
f *s13; *s23g dx3 ð32Þ

and the above stress resultant relationship can be written in matrix form as

*M

*Q

( )
¼

*D� 0

0 *G�

" #
*j

*es

( )
; ð33Þ

where the components of the rigidity matrix are

*D� ¼
Z
*c
x2

3
*D�p dx3; *G� ¼

Z
*c

ks
*D�s dx3 ð34Þ

in which *D� ði; j ¼ 1; 3Þ and *G� ði; j ¼ 4; 5Þ are respectively bending and transverse shear stiffness
coefficients; ks is the shear correction factor.

5. Mass matrix

In this section, the mass matrices for the plate elements are described. The consistent element
mass matrix for four-node plate element can be written as

MðeÞ ¼MðeÞ
ab ¼

Z
*VðeÞ
ðNaÞ

T *rNb
*J d *V; ð35Þ

where a; b are the number of element nodes and r is the density of the mass.
The mass matrix M

ðeÞ
ab can be written as

M
ðeÞ
ab ¼

%mab 0 0

0 &mab 0

0 0 &mab

264
375; ð36Þ
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where the translational mass %mab and the rotational mass &mab matrices linking to nodes a and b

can be written as

%mab ¼
Z

*AðeÞ
*r½NaNbh� %J d *A; &mab ¼

Z
*AðeÞ

*r½NaNbh3=12� %J d *A: ð37Þ

The above consistent mass matrix can be reformulated into lumped mass matrix [16] which has
only its diagonal components. The diagonal translational mass term %maa and the diagonal
rotatory inertia terms &maa associated with the base vectors #ea

1 and #ea
2 of the global co-ordinate

system at the node a can be written as

%m
�
aa ¼

Z
*VðeÞ

wa *r *J d *V; &m�
aa ¼

Z
*VðeÞ

warx
2
3
*J d *V; ð38Þ

where r is the mass density and the multiplier wa can be written as

wa ¼

R
*VðeÞ *rNaNa

*J d *VPn
k¼1

R
*VðeÞ *rNkNk

*J d *V
ð39Þ

in which n is the number of node for each element.
Therefore, the lumped diagonal mass matrix at node a can be written in matrix form as

MðeÞ�
aa ¼

%m�
aa 0 0

0 &m�
aa 0

0 0 &m�
aa

264
375: ð40Þ

Note that Gauss quadrature scheme is used to calculate both the consistent mass matrix and the
lumped mass matrix.

6. Equilibrium equation

In the absence of external loads and damping effects, the dynamic equilibrium equation [14]
based on the principle of virtual work (or more precisely virtual power) can be written asZ

O
½deT

pDpep þ deT
s Dses� dOþ

Z
O
½du�Tr.u dO ¼ 0: ð41Þ

For a discretized FE domain, the displacement field can be expressed in terms of the nodal
displacements ua and the global shape functions #Na [17] which are constructed from local shape
functions Na and the acceleration can be also written in the same way

u ¼
Xnp

a¼1

#Naðx1; x2Þu
a; .u ¼

Xnp

a¼1

#Naðx1; x2Þ.u
a; ð42Þ

where np is the total number of the node in the discretized domain and the virtual terms associated
with the displacement and acceleration are

du ¼
Xnp

a¼1

#Naðx1; x2Þdu
a; d.u ¼

Xnp

a¼1

#Naðx1; x2Þd.u
a: ð43Þ
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The strain–displacement and virtual strain–displacement relationships can then be written as

e ¼
Xnp

a¼1

#Baua; de ¼
Xnp

a¼1

#Badua; ð44Þ

where #Ba is the global strain–displacement matrix which are constructed from local strain–
displacement matrix Ba:

Substituting Eqs. (42)–(44) into Eq. (41) yields

duT½KuþM.u� ¼ 0: ð45Þ

Since the virtual displacements du are arbitrary, the above equation may be written as

KuþM.u ¼ 0: ð46Þ

A general solution of Eq. (46) may be written as

u ¼ fke
iokt: ð47Þ

Substituting Eq. (47) into Eq. (46) yields

½K� o2
kM�fk ¼ 0; ð48Þ

where fk is a set of displacement-type amplitude at the nodes otherwise known as the modal
vector and ok is the natural frequency associated with the kth mode and K ¼

Snel
e¼1 K

ðeÞ is global
stiffness matrices which contain contributions from the element stiffness

K
ðeÞ
ab ¼

Z
*AðeÞ
½ *BaT

k
*D� *Bb

k þ *BaT
s

*G� *Bb
s � d *A; ð49Þ

where the rigidity matrices *D� and *G� are given in Eq. (34). The *Ba
k is the matrix related to the

curvature term and the *Ba
s is the matrix due to assumed transverse shear strains defined in

Eqs. (20) and (21). The element mass matrices is provided as consistent and lumped mass matrix
forms in the previous section. The global mass matrix is formulated from the element mass such as
M ¼

Snel
e¼1 M

ðeÞ: Note that the subspace iteration method is used to solve the eigenvalue problem
in Eq. (48).

7. Numerical examples

In order to investigate the accuracy and reliability of the plate element based on the FE
formulation described in the previous sections, five numerical examples are considered. The
numerical results are compared with analytical solutions and FE reference solutions which are
available in the open literature.

7.1. Square plate

A square plate is used to evaluate the effect of different boundary conditions on the vibrational
behaviour of the plate. The geometry of the square plate is illustrated in Fig. 4 (left). The plate has
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four sides on the x1 ¼ 0; x2 ¼ 0; x1 ¼ a; x2 ¼ a which are denoted as four letters A–B–C–D. The
six set of boundary conditions are used in this examples: (a) S-S-S-S, (b) C-C-C-C, (c) C-C-C-F,
(d) S-C-S-C, (e) S-C-S-S, ( f) S-C-S-F, where S, C and F stand for the simply supported, clamped
and free boundary conditions, respectively. In order to compare the present results with the
existing reference solutions [18,19], the different values of shear correction factors are employed
according to the boundary conditions: (a) S-S-S-S, ks ¼ 0:8330; (b) C-C-C-C, ks ¼ 0:8330;
(c) C-C-C-F, ks ¼ 0:8601; (d) S-C-S-C, ks ¼ 0:8220; (e) S-C-S-S, ks ¼ 0:8220; ( f) S-C-S-F, ks ¼
0:8220: Two thickness–span ratios h=a ¼ 0:01; 0:1 are used in FE analysis to show the
applicability of the present plate element to both thin and thick plates.

In this example, the frequencies are presented in the following form:

On ¼ wnaðr=GÞ1=2;

where a is the side lengths of the plate, r is the density of the material and the G ¼ E=2ð1 þ nÞ is
the shear modulus in which E is the elastic modulus and n ¼ 0:3 is the Poisson ratio.

Prior to evaluate the sensitivity of plate frequencies to different boundary conditions, a
convergence study is carried out to check the convergence rate of the present plate element. Three
uniform FE meshes with 16, 64, 256 four-node elements are used in the convergence study with
the boundary of S-S-S-S. From numerical results as shown in Fig. 5, the present plate element
shows a good monotonic convergence rate. We therefore decided to use the FE mesh with 400
four-node elements for evaluation of plate frequencies with various boundary conditions. Note
that the numerical results with 400 four-node elements can be directly compared to the existing
FE reference solution calculated with 100 nine-node FEs [14].

In numerical tests, both consistent and lumped mass matrices are used to calculate natural
frequencies and the corresponding modes. The frequencies obtained by using the consistent mass
matrix show slightly higher values than those calculated by the lumped mass matrix. The
frequencies calculated with the lumped mass matrix in the lower mode have a good agreement
with the reference solution [19–21], but the frequencies produced by consistent mass matrix have a
better agreement with the reference solution in higher modes. Although the present FE produces a
little higher values of frequencies than those calculated by the assumed natural nine-node plate FE
described in Ref. [14], it generally has a good agreement with the existing reference solutions
[18–24]. In addition, the present element does not show any locking phenomenon with the
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stiffness matrix formed by full Gauss integration but on the contrary the numerical results
produced by the standard RM plate element denoted as SP4 exhibit serious locking phenomenon
in thin plate as described in Table 1. All the numerical results are summarized in Tables 1–6.

7.2. Parallelogram plate

As further investigation into the performance of the present element on the rectangular shape
plate, a parallelogram plate is used. In this example, we mainly examine the effect of the skewness
on the vibrational behaviour of the plate. The numerical analyses are therefore carried out for the
angles 0
pyp50
 with the aspect ratio a=b ¼ 1: The geometry of parallelogram plate is
illustrated in Fig. 6 (left).

The same notation used in the previous example is adopted to denote the boundary condition of
the plate and the case S–C–S–C is used in this example. The plate is discretized with a mesh of 400,
four-node elements as shown in Fig. 6 (right). The thickness–span ratio h=a ¼ 0:01 is used in FE
analysis. The resulting frequencies are presented in the following form:

On ¼
wna2

p2
ðrh=DÞ1=2;
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where a is the side length of the plate, r is the density of material and D ¼ Eh3=12ð1 � n2Þ is
the flexural rigidity of the plate in which E is the elastic modulus and n ¼ 0:3 is the Poisson
ratio.

From numerical results, the modes are divided into symmetric and antisymmetric groups in
accordance with the local axis ðxiÞ induced by the skewness. It appears that the skewness
intensifies the rigidity of the plate and the higher frequencies are therefore detected in the plate
with severer skewness. Although there is some difference between the present FE solution and
reference solution [25] in case of plate with higher skewness, the solutions calculated by the
consistent mass matrix have a good agreement with the reference solutions as shown in Table 7.
The maximum difference of 4.31% is observed between the frequencies calculated by using
consistent matrix and reference solutions with the highest skewness. The mode shapes are also
found to be greatly influenced by the degree of skewness. The mode shapes of the plate according
to various skewness are illustrated in Fig. 7.
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Table 1

The parameterized natural frequencies Omn of a plate with the S/S/S/S boundary condition

m n 3D MC TC SP4 ANP9 ANP9a Pre-a Pre-b

For the thickness h=a ¼ 0:1
1 1 0.932 0.930 0.963 0.9487 0.9303 0.9303 0.9327 0.9289

2 1 2.226 2.219 2.408 2.2878 2.2198 2.2195 2.2394 2.2165

2 2 3.421 3.406 3.853 3.4896 3.4064 3.4054 3.4381 3.3820

3 1 4.171 4.149 4.816 4.3352 4.1542 4.1510 4.2364 4.1502

3 2 5.239 5.206 6.261 5.3785 5.2102 5.2053 5.2957 5.1560

4 1 — 6.520 8.187 6.9065 6.5425 6.5270 6.7564 6.5244

3 3 6.889 6.834 — 7.0531 6.8414 6.8307 6.9652 6.7122

4 2 7.511 7.446 — 7.8001 7.4673 7.4484 7.6736 7.3645

4 3 — 8.896 — 9.2554 8.9178 8.8892 9.1428 8.6848

5 1 9.268 9.174 — 9.8630 9.2444 9.1928 9.6690 9.1660

5 2 — 9.984 — 10.6256 10.051 9.9924 10.4566 9.8516

4 4 10.89 10.764 — 11.2122 10.796 10.743 11.0955 10.3892

For the thickness h=a ¼ 0:01

1 1 0.0963 0.0963 0.2079 0.0963 0.0963 0.0966 0.0962

2 1 0.2406 0.2408 0.5917 0.2406 0.2406 0.2430 0.2405

2 2 0.3848 0.3853 0.8358 0.3848 0.3847 0.3890 0.3826

3 1 0.4809 0.4816 1.2930 0.4814 0.4810 0.4928 0.4828

3 2 0.6249 0.6261 1.4454 0.6253 0.6247 0.6380 0.6212

4 1 0.8167 0.8187 1.8958 0.8198 0.8179 0.8551 0.8257

3 3 0.8647 — 2.3061 0.8652 0.8639 0.8857 0.8536

4 2 0.9605 — 2.4148 0.9633 0.9609 0.9991 0.9589

4 3 1.1997 — 2.7376 1.2025 1.1988 1.2449 1.1826

Note: 3D: three-dimensional closed-form solution [22]; MC: Reissner–Mindlin thick-plate closed-form solution [21];

TC: thin-plate closed-form solution [20]; SP4: four-node standard plate bending FE solution using consistent mass;

ANP9: nine-node assumed strain plate bending FE solution using consistent mass [12,14]; ANP9a: nine-node assumed

strain plate bending FE solution using lumped mass [12,14]; Pre-a: present FE solution using consistent mass; Pre-b:

present FE solution using lumped mass.

S.J. Lee / Journal of Sound and Vibration 278 (2004) 657–684 669



7.3. Circular plate

A circular plate with clamped boundaries is analyzed. The entire plate is used to examine the
free vibration behaviour of the plate. The geometry of the plate is illustrated in Fig. 8 (left) and it
is discretized with a mesh of 432, four-node elements as shown in Fig. 8 (right).

Two thickness–span ratios h=2r ¼ 0:01 and 0.1 are used in this study. The resulting frequencies
are presented in the following form:

On ¼ wnr2ðrh=DÞ1=2;

where r is the radius of the circular plate, r is the density of material and the D ¼ Eh3=12ð1 � n2Þ is
the flexural rigidity of the plate in which E is the elastic modulus and n ¼ 0:3 is the Poisson ratio.
From numerical results, asymmetric and axisymmetric vibration modes are detected and multiple
frequencies are obtained from the axisymmetric modes. It is shown that there is minor numerical
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Table 2

The parameterized natural frequencies Omn of a plate with the C/C/C/C boundary condition

m n MC TC SP4 ANP9 ANP9a Pre-a Pre-b

For the thickness h=a ¼ 0:1
1 1 1.594 1.756 1.6345 1.5913 1.5912 1.5962 1.5885

2 1 3.046 3.581 3.1349 3.0406 3.0397 3.0683 3.0335

2 2 4.285 5.280 4.3717 4.2653 4.2631 4.2999 4.2243

3 1 5.035 6.421 5.2315 5.0341 5.0289 5.1275 5.0172

3 2 5.078 6.451 5.2810 5.0817 5.0763 5.1767 5.0662

4 1 6.2693 6.0891 6.0817 6.1745 6.0039

3 3 — — 7.8016 7.4459 7.4258 7.6621 7.3928

4 2 — — 7.9044 7.6934 7.6788 7.8053 7.5120

4 3 — — 8.6082 8.2911 8.2675 8.4836 8.1330

5 1 — — 8.6884 8.3669 8.3427 8.5642 8.2115

5 2 — — 10.0453 9.7322 9.6978 9.9295 9.4216

For the thickness h=a ¼ 0:01

1 1 0.1754 0.1756 0.4531 0.1754 0.1754 0.1765 0.1756

2 1 0.3576 0.3581 0.9421 0.3576 0.3575 0.3635 0.3592

2 2 0.5274 0.5280 1.2734 0.5268 0.5265 0.5359 0.5260

3 1 0.6402 0.6421 1.7710 0.6415 0.6407 0.6634 0.6484

3 2 0.6432 0.6432 1.7733 0.6446 0.6438 0.6666 0.6516

4 1 — — 1.9885 0.8034 0.8021 0.8267 0.8026

3 3 — — 2.5319 1.0296 1.0261 1.0876 1.0472

4 2 — — 2.9271 1.0705 1.0679 1.1052 1.0614

4 3 — — 3.0781 1.1818 1.1776 1.2395 1.1853

5 1 — — 3.0826 1.1868 1.1825 1.2448 1.1908

5 2 — — 3.4802 1.4436 1.4373 1.5095 1.4282

Note: MC: reference solution using the Rayleigh–Ritz method [19]; TC: reference solution using the Rayleigh–Ritz

method (thin plate theory) [20]; SP4: four-node standard plate bending FE solution using consistent mass; ANP9: nine-

node assumed strain plate bending FE solution using consistent mass [12,14]; ANP9a: nine-node assumed strain plate

bending FE solution using lumped mass [12,14]; Pre-a: present FE solution using consistent mass; Pre-b: present FE

solution using lumped mass.
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difference between the reference solution [1] and the present result for the thickness–span ratio
h=2r ¼ 0:01: More specifically, some intermediate frequencies are calculated in the FE analysis.
However, the frequencies obtained from the present plate element show a very good agreement
with analytical solution based on Mindlin theory [26] and the higher order FE solutions [12,14] in
overall modes. In case of the thickness–span ratio h=2r ¼ 0:1; the present result have a good
agreement with the reference solution [26] based on Mindlin plate theory. The natural frequencies
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Table 3

The parameterized natural frequencies On of a plate with the C/C/C/F boundary condition

n MC TC SP4 ANP9 ANP9a Pre-a Pre-b

For the thickness h=a ¼ 0:1
1 1.089 1.171 1.1167 1.0807 1.0807 1.0846 1.0810

2 1.785 1.953 1.7840 1.7440 1.7438 1.7473 1.7326

3 2.673 3.094 2.7616 2.6577 2.6569 2.6863 2.6597

4 3.216 3.744 3.2961 3.1979 3.1967 3.2207 3.1660

5 3.318 3.938 3.3778 3.2912 3.2902 3.3125 3.2646

6 4.615 5.699 4.6664 4.5605 4.5579 4.5884 4.4827

7 4.9540 4.7378 4.7328 4.8303 4.7331

8 — — 5.4645 5.2521 5.2457 5.3367 5.1834

9 — — 5.5060 5.3185 5.3129 5.3968 5.2647

10 — — 6.5933 6.4016 6.3925 6.4768 6.2503

11 — — 6.6272 6.4539 6.4456 6.5242 6.3100

12 — — 7.5419 7.1630 7.1454 7.3710 7.1204

13 — — 8.0300 7.6879 7.6669 7.8748 7.5637

14 — — 8.0925 7.7092 7.6851 7.9108 7.5749

For the thickness h=a ¼ 0:01

1 0.1171 0.1171 0.3214 0.1166 0.1166 0.1174 0.1171

2 0.1951 0.1953 0.4589 0.1949 0.1949 0.1960 0.1943

3 0.3093 0.3094 0.8780 0.3082 0.3081 0.3143 0.3110

4 0.3740 0.3744 0.9493 0.3738 0.3736 0.3789 0.3721

5 0.3931 0.3938 0.9564 0.3924 0.3923 0.3984 0.3924

6 0.5695 0.5699 1.2923 0.5678 0.5674 0.5770 0.5630

7 — — 1.7322 0.5963 0.5955 0.6188 0.6057

8 — — 1.7779 0.6556 0.6547 0.6749 0.6536

9 — — 1.7888 0.6835 0.6825 0.7053 0.6872

10 — — 2.0061 0.8417 0.8402 0.8636 0.8311

11 — — 2.0141 0.8605 0.8591 0.8844 0.8539

12 — — 2.5609 0.9833 0.9800 1.0422 1.0048

13 — — 2.8977 1.0400 1.0361 1.0914 1.0386

14 — — 2.9328 1.0720 1.0684 1.1296 1.0844

Note: MC: reference solution using the Rayleigh–Ritz method [19]; TC: reference solution using the Rayleigh–Ritz

method (thin plate theory) [20]; SP4: four-node standard plate bending FE solution using consistent mass; ANP9: nine-

node assumed strain plate bending FE solution using consistent mass [12,14]; ANP9a: nine-node assumed strain plate

bending FE solution using lumped mass [12,14]; Pre-a: present FE solution using consistent mass; Pre-b: present FE

solution using lumped mass.

S.J. Lee / Journal of Sound and Vibration 278 (2004) 657–684 671



are presented in Table 8 where the FE reference solution denoted as ANS9 is obtained by using
the lumped mass matrix. The mode shapes of the circular plate are illustrated in Fig. 9.

7.4. Elliptical plates

The vibration characteristics of elliptical plates with aspect ratios a=b ¼ 2; 3 and 4 are
investigated in this example. The geometry of the plate is presented in Fig. 10 (left).
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Table 4

The parameterized natural frequencies On of a plate with the S/C/S/C boundary condition

n MC TC FS SP4 ANP9 ANP9a Pre-a Pre-b

For the thickness h=a ¼ 0:1
1 1.302 1.413 1.300 1.3368 1.3002 1.3002 1.3105 1.3047

2 2.398 2.671 2.394 2.4704 2.3946 2.3941 2.4234 2.3981

3 2.888 3.383 2.885 2.9930 2.8861 2.8852 2.9412 2.9086

4 3.852 4.615 3.839 3.9535 3.8410 3.8394 3.9070 3.8408

5 4.237 4.988 4.232 4.4247 4.2362 4.2328 4.3388 4.2499

6 4.939 6.299 4.936 5.1792 4.9444 4.9394 5.1044 4.9957

7 — — — 5.6523 5.4626 5.4571 5.5886 5.4389

8 — — — 6.0156 5.7979 5.7913 5.9597 5.7978

9 — — — 6.9543 6.5768 6.5611 6.8351 6.5998

10 — — — 7.4829 7.2296 7.2173 7.4326 7.1581

11 — — — 7.7554 7.3315 7.3119 7.6691 7.4000

12 — — — 7.9603 7.6051 7.5854 7.8722 7.5529

13 — — — 8.4899 8.0972 8.0746 8.4274 8.0822

14 — — — 9.5323 9.1558 9.1256 9.4747 8.9960

For the thickness h=a ¼ 0:01

1 0.1411 0.1413 0.1411 0.3524 0.1411 0.1411 0.14194 0.1413

2 0.2668 0.2671 0.2668 0.6589 0.2668 0.2668 0.26938 0.2665

3 0.3377 0.3383 0.3376 0.8961 0.3378 0.3377 0.34378 0.3398

4 0.4608 0.4615 0.4604 1.0767 0.4607 0.4604 0.46757 0.4594

5 0.4979 0.4988 0.4977 1.3268 0.4984 0.4980 0.50982 0.4993

6 0.6279 0.6299 0.6279 1.6008 0.6295 0.6287 0.65171 0.6372

7 — — — 1.7467 0.6827 0.6820 0.69726 0.6782

8 — — — 1.8652 0.7539 0.7529 0.77634 0.7544

9 — — — 2.2363 0.8321 0.8301 0.86727 0.8373

10 — — — 2.3266 0.9725 0.9705 1.00083 0.96280

11 — — — 2.5142 1.0080 1.0052 1.04474 1.00188

12 — — — 2.9108 1.0190 1.0158 1.07782 1.03796

13 — — — 2.9875 1.1460 1.1416 1.20343 1.15188

14 — — — 2.9995 1.2690 1.2623 1.33958 1.27054

Note: MC: reference solution using the Rayleigh–Ritz method [19]; TC: thin-plate closed-form solution [20]; FS: the

Reissner–Mindlin finite strip solution [24]; SP4: four-node standard plate bending FE solution using consistent mass;

ANP9: nine-node assumed strain plate bending FE solution using consistent mass [12,14]; ANP9a: nine-node assumed

strain plate bending FE solution using lumped mass [12,14]; Pre-a: present FE solution using consistent mass; Pre-b:

present FE solution using lumped mass.

S.J. Lee / Journal of Sound and Vibration 278 (2004) 657–684672



The thickness–span ratio is taken as h=2b ¼ 0:01 and 400 FEs as illustrated in Fig. 10 (right) are
used in analysis. The resulting frequencies are presented in the following form:

On ¼ wna2ðrh=DÞ1=2;

where a is the radius of the elliptical plates in the x1 direction, r is the density of material and
D ¼ Eh3=12ð1 � n2Þ is the flexural rigidity of the plate in which E is the elastic modulus and
n ¼ 0:3 is the Poisson ratio.
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Table 5

The parameterized natural frequencies On of a plate with the S/C/S/S boundary condition

n MC TC FS SP4 ANP9 ANP9a Pre-a Pre-b

For the thickness h=a ¼ 0:1
1 1.092 1.154 1.092 1.1181 1.0919 1.0918 1.09783 1.09307

2 2.298 2.521 2.296 2.3689 2.2969 2.2965 2.32367 2.29958

3 2.543 2.862 2.542 2.6305 2.5425 2.5420 2.58119 2.55357

4 3.616 4.203 3.611 3.7111 3.6121 3.6108 3.66627 3.60518

5 4.187 4.893 4.184 4.3766 4.1892 4.1859 4.29109 4.20344

6 4.543 5.525 4.541 4.7587 4.5475 4.5434 4.67715 4.57955

7 — — — 5.5095 5.3267 5.3216 5.44619 5.30131

8 — — — 5.6941 5.4967 5.4910 5.63367 5.48263

9 — — — 6.9291 6.5521 6.5365 6.81023 6.57605

10 — — — 7.2644 6.9368 6.9192 7.21111 6.94678

11 — — — 7.3383 7.0252 7.0137 7.23479 6.98343

12 — — — 7.8774 7.5256 7.5063 7.78957 7.47468

13 — — — 8.1478 7.7762 7.7554 8.07188 7.74373

14 — — — 9.3914 9.0236 8.9942 9.33228 8.86266

For the thickness h=a ¼ 0:01

1 0.1153 0.1154 0.1153 0.2679 0.1153 0.1153 0.1158 0.1153

2 0.2521 0.2521 0.2519 0.6171 0.2519 0.2519 0.2544 0.2517

3 0.2858 0.2862 0.2858 0.7347 0.2859 0.2858 0.2897 0.2866

4 0.4199 0.4203 0.4195 0.9447 0.4197 0.4195 0.4249 0.4178

5 0.4889 0.4893 0.4883 1.3059 0.4890 0.4886 0.5004 0.4902

6 0.5533 0.5525 0.5513 1.5109 0.5522 0.5516 0.5683 0.5562

7 — — — 1.5132 0.6518 0.6511 0.6653 0.6474

8 — — — 1.6450 0.6862 0.6854 0.7032 0.6840

9 — — — 2.0543 0.8255 0.8235 0.8607 0.8311

10 — — — 2.3142 0.9159 0.9136 0.9398 0.9048

11 — — — 2.4579 0.9162 0.9142 0.9621 0.9277

12 — — — 2.5996 0.9840 0.9815 1.0204 0.9789

13 — — — 2.6977 1.0510 1.0478 1.0968 1.0511

14 — — — 2.8520 1.2450 1.2404 1.2895 1.2240

Note: MC: reference solution using the Rayleigh–Ritz method [19]; TC: thin-plate closed-form solution [20]; FS: the

Reissner–Mindlin finite strip solution [24]; SP4: four-node standard plate bending FE solution using consistent mass;

ANP9: nine-node assumed strain plate bending FE solution using consistent mass [12,14]; ANP9a: nine-node assumed

strain plate bending FE solution using lumped mass [12,14]; Pre-a: present FE solution using consistent mass; Pre-b:

present FE solution using lumped mass.
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From numerical results, the frequencies calculated by using the present plate element show a
good agreement with a reference solution [27] except for some difference in the higher mode. The
mode shape up to the third mode does not change regardless of the different aspect ratios but it
has been greatly effected by the aspect ratio ða=bÞ of the plate in higher modes. In particular, the
larger aspect ratio produces larger numbers of waves dominantly in the x1 direction. Both
consistent and lumped mass matrix are used in FE analysis and the maximum error of 2.13% is
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Table 6

The parameterized natural frequencies On of a plate with the S/C/S/F boundary condition

n MC TC FS SP4 ANP9 ANP9a Pre-a Pre-b

For the thickness h=a ¼ 0:1
1 0.603 0.619 0.598 0.6148 0.5977 0.5977 0.6001 0.5984

2 1.495 1.613 1.483 1.5185 1.4836 1.4835 1.4949 1.4827

3 1.900 2.035 1.884 1.9639 1.8848 1.8845 1.9097 1.8927

4 2.744 3.075 2.720 2.7945 2.7220 2.7214 2.7555 2.7178

5 3.073 3.533 3.057 3.1689 3.0595 3.0584 3.1107 3.0585

6 3.855 4.421 3.827 4.0351 3.8329 3.8299 3.9354 3.8600

7 — — — 4.3051 4.1892 4.1872 4.2601 4.1642

8 — — — 4.7520 4.5709 4.5671 4.6775 4.5676

9 — — — 5.3998 5.1551 5.1489 5.3070 5.1547

10 — — — 6.0912 5.9013 5.8948 6.0373 5.8436

11 — — — 6.3793 6.1497 6.1415 6.3133 6.0947

12 — — — 6.6341 6.2367 6.2218 6.4988 6.2825

13 — — — 7.2435 6.8765 6.8598 7.1360 6.8696

14 — — — 7.9615 7.6122 7.5885 7.9114 7.5613

For the thickness h=a ¼ 0:01

1 0.0622 0.0619 0.0619 0.1520 0.0619 0.0619 0.0620 0.0619

2 0.1612 0.1613 0.1611 0.3578 0.1612 0.1612 0.1620 0.1606

3 0.2045 0.2035 0.2033 0.5656 0.2034 0.2033 0.2057 0.2038

4 0.3075 0.3075 0.3070 0.6765 0.3071 0.3070 0.3099 0.3056

5 0.3528 0.3533 0.3526 0.9025 0.3528 0.3527 0.3580 0.3516

6 0.4438 0.4421 0.4413 1.0964 0.4420 0.4417 0.4536 0.4449

7 — — — 1.2744 0.5024 0.5021 0.5094 0.4975

8 — — — 1.3473 0.5454 0.5449 0.5571 0.5439

9 — — — 1.6300 0.6411 0.6402 0.6606 0.6399

10 — — — 1.7518 0.7438 0.7430 0.7593 0.7344

11 — — — 1.8819 0.7786 0.7768 0.8119 0.7820

12 — — — 2.2667 0.7911 0.7899 0.8142 0.7872

13 — — — 2.2903 0.8809 0.8788 0.9161 0.8818

14 — — — 2.3471 1.0288 1.0252 1.0638 1.0148

Note: MC: reference solution using the Rayleigh–Ritz method [19]; TC: thin-plate closed-form solution [20]; FS: the

Reissner–Mindlin finite strip solution [24]; SP4: four-node standard plate bending FE solution using consistent mass;

ANP9: nine-node assumed strain plate bending FE solution using consistent mass [12,14]; ANP9a: nine-node assumed

strain plate bending FE solution using lumped mass [12,14]; Pre-a: present FE solution using consistent mass; Pre-b:

present FE solution using lumped mass.
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observed between the frequencies calculated by using consistent and lumped mass matrices in case
of the aspect ratio a=b ¼ 4: The natural frequencies are summarized in Table 9 and the mode
shapes refer to the illustrations in Ref. [14].

7.5. Triangular plate

A triangular cantilever plate is considered to investigate the performance of the present plate
element in the cantilever situation with various skewnesses. The geometry of the plate is varied
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Table 7

The parameterized natural frequencies On of parallelogram plate

Mode n

a=b y 1 2 3 4 5 6 7 8

0 refa 2.933 5.548 7.024 9.586 10.361 13.080 14.210 15.690

Pre-a 2.947 5.593 7.138 9.708 10.586 13.531 14.477 16.119

Pre-b 2.934 5.534 7.056 9.539 10.367 13.229 14.082 15.664

5 refa 2.953 5.570 7.084 9.557 10.500 13.180 14.140 15.870

Pre-a 2.966 5.615 7.197 9.684 10.716 13.636 14.415 16.297

Pre-b 2.953 5.555 7.114 9.513 10.497 13.331 14.019 15.836

10 refa 3.014 5.641 7.266 9.529 10.860 13.500 14.030 16.340

Pre-a 3.025 5.682 7.375 9.658 11.063 13.956 14.307 16.751

Pre-b 3.011 5.621 7.290 9.483 10.839 13.644 13.907 16.270

15 refa 3.121 5.765 7.579 9.552 11.390 13.980 14.080 16.960

Pre-a 3.125 5.800 7.680 9.693 11.584 14.256 14.512 17.384

Pre-b 3.111 5.737 7.591 9.511 11.348 13.850 14.186 16.870

20 refa 3.276 5.955 8.040 9.699 12.100 14.050 14.910 17.750

Pre-a 3.275 5.981 8.127 9.818 12.274 14.319 15.336 18.187

Pre-b 3.260 5.914 8.032 9.630 12.021 13.902 14.991 17.628

25 refa 3.497 6.226 8.678 9.949 13.000 14.300 16.100 18.800

Pre-a 3.483 6.237 8.742 10.057 13.162 14.529 16.478 19.209

Pre-b 3.466 6.166 8.639 9.859 12.884 14.096 16.102 18.594

30 refa 3.797 6.598 9.539 10.300 14.100 14.700 17.800 19.600

Pre-a 3.765 6.591 9.565 10.436 14.298 14.921 17.991 20.415

Pre-b 3.746 6.514 9.450 10.224 13.986 14.464 17.561 19.564

35 refa 4.203 7.104 10.700 10.900 15.400 15.700 19.600 20.900

Pre-a 4.142 7.071 10.658 10.988 15.537 15.761 19.830 21.356

Pre-b 4.121 6.984 10.527 10.757 15.046 15.404 19.232 20.566

40 refa 4.753 7.791 11.800 12.200 16.400 17.600 21.300 23.300

Pre-a 4.649 7.720 11.768 12.117 16.444 17.676 21.493 23.564

Pre-b 4.625 7.621 11.509 11.962 15.905 17.256 20.599 22.918

45 refa 5.510 8.74 12.900 14.400 17.800 20.300 23.000 27.300

Pre-a 5.341 8.605 12.856 14.088 17.749 20.233 23.129 27.307

Pre-b 5.311 8.488 12.559 13.899 17.145 19.724 22.067 26.493

50 refa 6.590 10.100 14.600 17.400 19.700 24.000 25.300 32.000

Pre-a 6.306 9.835 14.387 16.797 19.642 23.723 25.336 31.449

Pre-b 6.269 9.693 14.034 16.547 18.952 23.067 24.121 29.710

Note: refa: reference solution using the Ritz method (thin plate theory) [25]; Pre-a: present FE solution using consistent

mass; Pre-b: present FE solution using lumped mass.
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Fig. 6. The geometry of parallelogram plate and its FE mesh.

Fig. 7. Mode shapes of a parallelogram plate with the aspect ratio: h=a ¼ 0:01:
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Table 8

The parameterized natural frequencies On of a clamped circular plate

Aspect ratio h=2r ¼ 0:01 Aspect ratio h=2r ¼ 0:1

n AS1 AS2 ANS9 Pre-a Pre-b AS3 Pre-a Pre-b

1 10.2158 10.216 10.2129 10.2572 10.2196 9.240 9.2605 9.2277

2 21.2600 21.260 21.2311 21.4981 21.3149 17.834 17.9469 17.8010

— — — — — — — — —

3 34.8800 34.877 34.7816 35.3941 34.9217 27.214 27.0345 26.6801

— — — 34.7915 35.5173 34.9411 — 27.6566 27.2246

4 39.7710 39.771 39.6766 40.8975 40.2339 30.211 30.3221 29.8562

5 51.0400 51.030 50.8348 52.2054 50.9826 37.109 37.2579 36.3966

— — — — — — — — —

6 60.8200 60.829 60.6761 63.2397 61.4506 42.409 43.2702 42.1089

— — — — — — — — —

7 69.6659 69.666 69.3028 71.7426 69.2707 47.340 47.7074 46.0596

— — — 69.3379 72.0375 69.4915 — 47.8028 46.0985

8 84.5800 84.583 84.2999 88.1498 84.6280 54.557 56.0625 53.9332

— — — 84.3835 89.3007 85.3834 — 57.1311 54.7720

9 111.010 89.104 88.9848 94.6775 90.0831 56.682 58.1458 55.8268

10 140.108 90.739 90.2078 94.7423 — 57.793 58.7867 55.8602

— — — — 90.6341 — — —

11 111.021 110.563 117.4438 110.9489 66.667 69.2908 65.5682

— — — — — — — 65.7435

12 114.213 113.489 121.0943 113.0738 68.396 70.2640 65.7435

— — 113.502 121.1140 113.1239 — 70.5168 65.7772

13 120.079 119.848 130.3322 122.9492 70.473 73.1408 69.1471

— — — — — — — —

14 140.108 139.222 149.1776 138.4807 78.733 81.6580 75.4313

— — — — — — —

15 153.815 139.228 151.4207 139.0212 83.937 82.5909 76.4241

— — 139.376 151.4207 139.5913 — 77.4281

Note: AS1: analytical solution [1]; AS2: analytical solution ðh=2r ¼ 0Þ [26]; ANP9a: nine-node assumed strain plate

bending FE solution using lumped mass [12,14]; AS3: analytical solution [26]; Pre-a: present FE solution using

consistent mass; Pre-b: present FE solution using lumped mass; — multiple frequencies associated with axisymmetrix

modes.

Fig. 8. The geometry of circular plate and its FE mesh.
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with the parameters a; b; y as shown in Fig. 11 (left). Two thickness–span ratios h=a ¼ 0:001 and
0.2 are used with the aspect ratio b=a ¼ 1:0: Six skew angles such as y ¼
90
; 105
; 120
; 135
; 150
; 165
; are considered and it is discretized with a mesh of 398,
four-node element shown in Fig. 11 (right).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 9. Mode shapes of a circular plate with the aspect ratio h=a ¼ 0:01: (a) mode 1–(o) mode 15.

S.J. Lee / Journal of Sound and Vibration 278 (2004) 657–684678



ARTICLE IN PRESS

Table 9

The parameterized natural frequencies On of clamped elliptical plates

a=b ¼ 2 a=b ¼ 3 a=b ¼ 4

n ref Pre-a Pre-b ref Pre-a Pre-b ref Pre-a Pre-b

1 27.4773 27.4835 27.4450 56.8995 56.8426 56.7428 97.5984 96.6481 96.4697

2 39.4976 39.5436 39.4363 71.5902 71.2823 71.1019 115.608 113.3580 113.0638

3 55.9773 56.2277 55.9592 90.2380 89.7835 89.4269 137.269 134.0962 133.5773

4 69.8557 70.0237 69.7234 113.266 112.2233 111.5923 164.325 158.1555 157.3216

5 77.0443 77.6159 77.0353 140.746 139.1438 138.0660 195.340 186.5070 185.1886

6 88.0472 87.6141 87.1306 150.089 149.5870 148.5705 255.095 218.9070 216.9055

7 — 103.8727 102.7483 — 170.6068 168.8583 — 254.3643 252.6294

8 — 109.4776 108.5877 — 171.9638 170.6857 — 256.0217 253.0590

9 — 132.5737 131.4208 — 198.8995 196.9245 — 279.7629 277.7079

10 — 135.0869 133.0942 — 206.8869 204.1486 — 297.6035 293.3309

11 — 135.3557 133.8865 — 228.6011 225.8830 — 311.3225 308.3346

12 — 155.5869 154.1045 — 247.9671 243.8796 — 343.0278 337.4480

13 — 165.6212 163.2066 — 262.5009 258.6107 — 344.3824 340.1423

14 — 171.3334 168.0218 — 286.4414 282.5174 — 380.8356 375.6637

15 — 183.3699 181.0090 — 293.9078 287.9568 — 394.6097 386.3833

Note: ref: reference solution using the Rayleigh–Ritz method [27]; Pre-a: present solution using consistent mass; Pre-b:

present solution using lumped mass.

Fig. 10. The geometry of elliptical plate and its FE mesh.

Fig. 11. The geometry of triangular plate and its FE mesh.
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In this example, a frequency parameter O is used as

On ¼
wna2

p2
ðrh=DÞ1=2;

where a is the side length with clamped boundary, r is the density of material and the D ¼
Eh3=12ð1 � n2Þ is the flexural rigidity of the plate in which E is the elastic modulus and n ¼ 0:3 is
the Poisson ratio.

The frequencies calculated by using the present plate element with the thickness–span ratio
h=a ¼ 0:001 show a good agreement with reference solutions [28–31]. In particular, the present
solution with consistent mass matrix is found to be very close to the reference solution [30] which
uses a special function representing singularity at the corner of thin skewed triangular plate. The
plate has similar frequencies regardless of the different values of skew angle in the lower mode.
However, the greater skewness triggers some difference in the higher mode. In particular, a large
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Table 10

The parameterized natural frequencies On of triangular plates with the aspect ratio h=a ¼ 0:001

Mode n

a=b y 1 2 3 4 5 6 7 8

90 refa 0.624 2.336 3.373 5.665 7.547 — — —

refb 0.588 2.318 3.239 5.540 7.518 — — —

refc 0.624 2.377 3.308 5.689 7.743 — — —

refd 0.625 2.377 3.310 5.689 7.743 — — —

Pre-a 0.624 2.379 3.317 5.724 7.794 10.200 11.453 13.801

Pre-b 0.623 2.362 3.273 5.627 7.663 9.828 11.149 13.428

105 refa 0.587 2.140 3.441 5.271 6.976 — — —

refc 0.584 2.181 3.409 5.280 7.264 — — —

refd 0.586 2.182 3.412 5.279 7.263 — — —

Pre-a 0.583 2.181 3.413 5.303 7.289 10.095 11.468 13.856

Pre-b 0.583 2.164 3.361 5.180 7.181 9.656 11.164 13.358

120 refa 0.584 2.138 3.642 5.486 6.831 — — —

refc 0.576 2.174 3.639 5.511 7.108 — — —

refd 0.578 2.178 3.657 5.518 7.109 — — —

Pre-a 0.575 2.174 3.638 5.534 7.139 10.477 11.873 14.937

Pre-b 0.575 2.160 3.585 5.409 7.042 10.156 11.503 14.422

135 refa 0.605 2.327 4.141 6.378 7.393 — — —

refc 0.590 2.329 4.137 6.381 7.602 — — —

refd 0.593 2.335 4.222 6.487 7.609 — — —

Pre-a 0.588 2.324 4.126 6.381 7.614 11.224 13.588 15.815

Pre-b 0.587 2.312 4.070 6.212 7.498 10.989 13.053 15.193

150 refc 0.617 2.576 5.376 7.524 10.285 — — —

refd 0.636 2.618 5.521 8.254 10.395 — — —

Pre-a 0.613 2.564 5.353 7.460 10.306 12.942 17.015 20.289

Pre-b 0.613 2.556 5.263 7.278 9.968 12.767 16.483 19.207

Note: refa: FE reference solution [28]; refb: experimental solution [29]; refc: reference solution using the Rayleigh–Ritz

method with corner function [30]; refd: reference solution using the pb2 Rayleigh–Ritz method (Mindlin plate theory)

[31]; Pre-a: present FE solution using consistent mass; Pre-b: present FE solution using lumped mass.
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drop in frequency is detected after the third mode of the plate. It is also observed that the plate
with the thickness–span ratio h=a ¼ 0:2 produces lower frequencies than those calculated with the
h=a ¼ 0:001 due to the effects of shear deformation and rotatory inertia. In general, the present
FE solution has a good agreement with other reference solutions in both very thin and thick cases.
The natural frequencies are summarized in Tables 10 and 11. The mode shapes of the triangular
plate with the aspect ratio h=a ¼ 0:001 are illustrated in Fig. 12.

8. Conclusions

The assumed natural strain four-node plate element is developed to assess the vibrational
behaviour of plate structures. In particular, the explicit expression of the assumed natural
transverse shear strains is provided. The accuracy and efficiency of the proposed plate FE
formulation are tested by five numerical examples. From the numerical results, the present plate
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Table 11

The parameterized natural frequencies On of triangular plates with the aspect ratio h=a ¼ 0:2

Mode n

a=b y 1 2 3 4 5 6 7 8

90 refa 0.582 1.900 2.408 3.936 — — — —

refb 0.581 1.901 2.410 — — — — —

Pre-a 0.582 1.915 2.428 3.984 5.018 5.944 6.670 7.889

Pre-b 0.582 1.906 2.411 3.946 4.966 5.841 6.581 7.721

105 refa 0.544 1.771 2.386 3.628 — — — —

refb 0.543 1.770 2.388 — — — — —

Pre-a 0.545 1.764 2.420 3.608 4.820 5.431 6.719 7.195

Pre-b 0.545 1.755 2.401 3.568 4.774 5.316 6.632 7.032

120 refa 0.533 1.772 2.419 3.565 — — — —

refb 0.532 1.769 2.419 — — — — —

Pre-a 0.532 1.773 2.437 3.591 4.765 5.323 6.774 7.126

Pre-b 0.532 1.765 2.417 3.558 4.721 5.236 6.692 7.005

135 refa 0.540 1.885 2.489 3.674 — — — —

refb 0.538 1.881 2.482 — — — — —

Pre-a 0.541 1.884 2.518 3.748 4.740 5.292 6.897 7.141

Pre-b 0.540 1.878 2.496 3.714 4.683 5.242 6.802 7.061

150 refa 0.559 2.059 2.396 3.590 — — — —

refb 0.555 2.047 2.386 — — — — —

Pre-a 0.559 2.095 2.483 3.910 4.517 5.763 6.710 7.802

Pre-b 0.559 2.091 2.453 3.881 4.485 5.707 6.627 7.737

165 refa 0.599 1.495 2.267 2.275 — — — —

refb 0.588 1.598 2.214 — — — — —

Pre-a 0.585 1.662 2.251 2.824 4.190 4.761 5.834 7.412

Pre-b 0.585 1.651 2.249 2.805 4.145 4.750 5.749 7.345

Note: refa: reference solution using the pb2 Rayleigh–Ritz method (Mindlin plate theory) [31]; refb: FE solution

(higher-order Mindlin plate theory) [32]; Pre-a: present FE solution using consistent mass; Pre-b: present FE solution

using lumped mass.

S.J. Lee / Journal of Sound and Vibration 278 (2004) 657–684 681



element based on the proposed formulation has performed well in most situations. It is shown
that the present plate element is applicable to either thin or thick situations with enough accuracy.
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